from Real Clear Science

The Math Behind Never-Repeating Patterns

By Priya Subramanian

Penrose tiling. PrzemekMajewskiCC BY-SA

Remember the graph paper you used at school, the kind that’s covered with tiny squares? It’s the perfect illustration of what mathematicians call a “periodic tiling of space”, with shapes covering an entire area with no overlap or gap. If we moved the whole pattern by the length of a tile (translated it) or rotated it by 90 degrees, we will get the same pattern. That’s because in this case, the whole tiling has the same symmetry as a single tile. But imagine tiling a bathroom with pentagons instead of squares – it’s impossible, because the pentagons won’t fit together without leaving gaps or overlapping one another.

Patterns (made up of tiles) and crystals (made up of atoms or molecules) are typically periodic like a sheet of graph paper and have related symmetries. Among all possible arrangements, these regular arrangements are preferred in nature because they are associated with the least amount of energy required to assemble them. In fact we’ve only known that non-periodic tiling, which creates never-repeating patterns, can exist in crystals for a couple of decades. Now my colleagues and I have made a model that can help understand how this is expressed.

[ click to continue reading at Real Clear Science ]